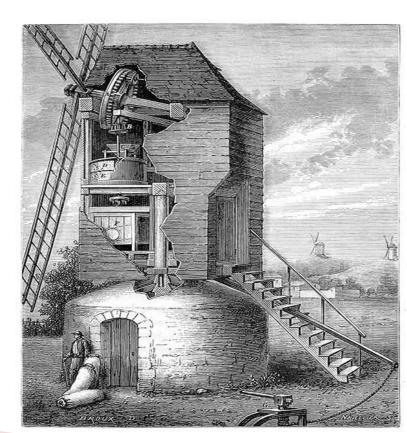


THE EVOLUTION OF PULVERIZING TECHNOLOGY

The Beginning


- Originally, manual grinders were created to reduce whole grains into flour
- Over time, the process evolved to include tools such as grinding stones that were spun manually setting the foundation for the process used today

Commercialization

- Demand for ground material increased resulting in variety of innovations to maximize production
- More efficient sources of energy were utilized:
 - Animals
 - Wind
 - Water

Electricity

- As technology advanced, electricity became the main source of energy in pulverizing
- Relays and analog cages were used to control the pulverizing process

Increased Demand in Powders

- Demand for pulverized materials increased proportionally with the industrial revolution
- The range of process-able materials expanded to include:
 - Polymers
 - Chemicals
 - Other materials

The Digital Era

- In the late 80's, the first programming logic controllers (PLCs) were introduced to manufacturing
- These simplified controls were able to tightly manage the process with minimal human intervention

Process Optimization

In the 20th century, the pulverizing industry faced challenges due to:

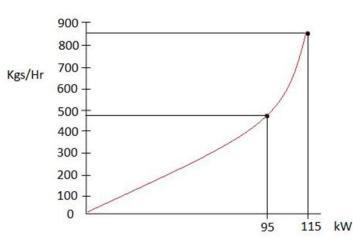
- Increased costs for:
 - Energy
 - Labour
 - Industrial space
 - Transportation
- International competition
- Tight profit margins
- Employee turnaround
- Safety expectations

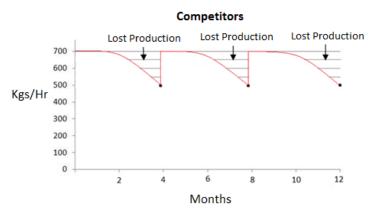
This forced manufacturers to optimize:

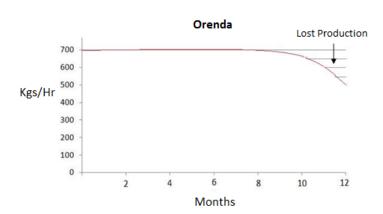
- Energy consumption
- Maintenance costs
- Down time and recovery
- Quick support
- Ease of operation
- Stability and safety of operation

AirForce® Technology

- Introduced in 2014
- Operating in high and low ambient temperatures
- At high and low altitudes
- Pulverizing high and low density polymers

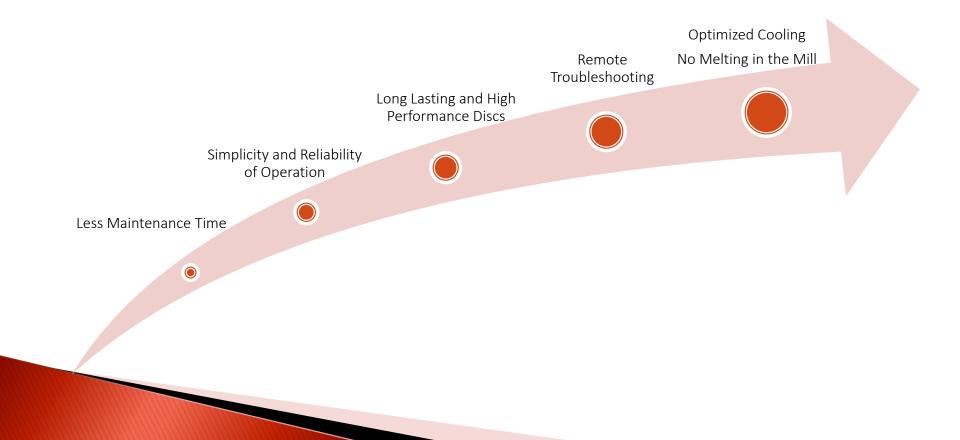

Optimized Energy Consumption


	Mill	Energy System	Production Rate
Orenda AirForce H1D500	Single	115 kW	700-900 kgs/hr
Other Pulverizers	Single or dual	110 – 120 kW	400-600 kgs/hr


Common Production issues

- Wasted Energy from not optimizing motor load to >=90%
- Insufficient cooling causing fear of meltdown
- Blade design
- Multiple mill imbalance

Optimized Maintenance Costs


- 1) Single mill systems require less maintenance when compared to multi mill systems
- 2) Double faced disposable discs require less handling when compared to single faced or segmented
- 3) Airforce[®] discs perform up to three times longer than conventional ones
- 4) Bearings and seals are air cooled, doubling their lifespan
- 5) No water cooling or related maintenance required
- 6) Remote troubleshooting
- 7) No meltdowns
- Based on customer feedback, these factors increase the average production while decreasing all disc related expenses by two-thirds

DOES THIS LOOK FAMILIAR? WITH THE ORENDA AIRFORCE THIS IS A THING OF THE PAST

OUR PROMISE YOU WILL <u>NEVER</u> HAVE TO DEAL WITH THIS AGAIN, BECAUSE YOU HAVE BETTER THINGS TO DO WITH YOUR TIME

Increase in Average Operating Hours

Process Wider Spectrum of Materials

Materials successfully pulverized at higher rates and quality

Company	Material	
Marlex Chevron Philips	Low density polyethylene	
Ampacet	EVA	
Clariant	P.P.	
Rotoworks	P.P PMPP141	

Exceptional Powder Quality

- The finished material particles are granular-like with homogeneous morphology, providing exceptional flow properties and bulk density
- The material is pulverized at a high temperature but the discs remain cool, thus preventing the pulverized particles from fusing to the disc and creating a meltdown
- Better powder particle morphology enhances productivity while reducing the rejection rate of finished rotomolded parts

Microscope image of pulverized product

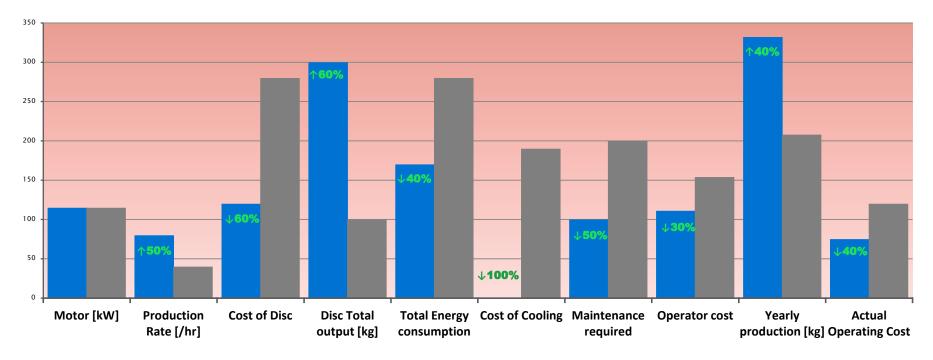
"very nice material morphology" "edges of particles are smooth" "no 'tails' coming off the edge of the particles"

> Sam D'Uva Ingenia Polymers

Design of the AirForce®

- Compact Design
 - At 2159 x 5588 mm, the AirForce[®] is one of the most compact designs available
- Operator Friendly
 - Easy to operate
- Minimizes Cleaning to less than one hour for color changes
 - The quick cleaning option include:

- Pneumatic sifter
- Quick clean gate
- Cyclone bottom swivels to open while keeping all piping intact
- The AirForce[®] pulverizer has been designed to prevent material from escaping at the bottom of the mill, eliminating the chances of cross contamination while maintaining a clean space surrounding the pulverizer


Customer Feedback on Operating Costs

- Orenda pulverizers minimize operating and maintenance costs while increasing production
- As seen on the following customer comparison sheet including all production expenses, AirForce[®] delivers the lowest cost operation (Euros per kilo)

Production Cost Analysis

Orenda AirForce Pulverizer

Competitor Dual mill pulverizer watercooled

* Data is considered in Hundreds

Delivered

Reduction In	 Energy Consumption per Kg of Material Pulverized Maintenance Costs Cleaning Time
Elimination Of	 Mill Adjustments and Calibrations Meltdowns Powder Escaping the Mill
Increase In	 Stable Hours of Operation Versatility in Pulverizing a Wider Spectrum of Materials
Design	•Operator Friendly •Tools to Minimize Contamination Between Color Materials •Remote Troubleshooting

AirForce® Models: Auto Gap Adjust

- > The latest AirForce[®] models can incorporate an option for adjusting the disc gap:
 - The first option features a manual Quick Gap Adjust design, which allows the operator to simply turn a dial to adjust the disc gap
 - The second option has a fully automated Smart Adjust system which incorporates artificial intelligence for maximum efficiency to obtain the optimum gap for the desired powder quality
- Both are significant advancements that eliminate costly downtime
- Operators no longer need to stop machines for time consuming adjustments

Summary

- Since 2014, the AirForce[®] technology has revolutionized pulverizing
- All claims are based on testimonials and customer feedback
- References are available upon request

Orenda Pulverizers

Established in 1996 in Toronto, Ontario, Canada

> A second facility was opened in Europe in 2012

> > Patented Airforce[®] Technology was introduced in 2014

> > > 2020, now a leader in the industry

THANK YOU FOR THE TIME YOU HAVE GIVEN US TODAY

